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The onset of thermal convection in a finite rotating cylinder is investigated using
direct numerical simulations of the Navier–Stokes equations with the Boussinesq
approximation in a regime in which spatio-temporal complexity is observed directly
after onset. The system is examined in the non-physical limit of zero centrifugal
force as well as with an experimentally realizable centrifugal force, leading to two
different paths to Küppers–Lortz-like spatio-temporal chaos. In the idealized case,
neglecting centrifugal force, the onset of convection occurs directly from a conduction
state, resulting in square patterns with slow roll switching, followed at higher thermal
driving by straight roll patterns with faster roll switching. The case with a centrifugal
force typical of laboratory experiments exhibits target patterns near the theoretically
predicted onset of convection, followed by a rotating wave that emerges via a
Hopf bifurcation. A subsequent Hopf bifurcation leads to ratcheting states with
sixfold symmetry near the axis. With increasing thermal driving, roll switching is
observed within the ratcheting lattice before Küppers–Lortz-like spatio-temporal
chaos is observed with the dissolution of the lattice at a slightly stronger thermal
driving. For both cases, all of these states are observed within a 2 % variation in the
thermal driving.

1. Introduction
Rotating convection has long been a paradigm problem in which to study

the emergence of spatio-temporal chaos, as such states are observed to appear
supercritically with the onset of convection when the fluid layer is rotating at
a sufficiently fast angular velocity. These chaotic states found in laboratory and
numerical experiments (e.g. see the reviews by Knobloch 1998; Bodenschatz, Pesch &
Ahlers 2000) are associated with the theoretical predictions of Küppers & Lortz
(1969) and Küppers (1970) who explored the linear stability of straight rolls in a
horizontally infinite rotating layer with respect to other straight roll patterns oriented
at different angles. They found that for rotation rates above a critical threshold, no
steady-state roll patterns were stable, as they lose stability to another set of straight
rolls oriented at an angle of about 59◦ to the first set. Laboratory experiments
(conducted in finite containers) have shown complexity in both space and time in
the guise of patches of re-orienting rolls immediately above the onset for rotation
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rates above the critical rate predicted by Küppers & Lortz (1969), although the
mechanism for the onset of spatio-temporal complexity observed in experiments is
qualitatively different from that suggested from the infinite layer results (Bodenschatz
et al. 1992; Hu et al. 1998). There has been a general expectation that a supercritical
bifurcation from the spatially uniform conduction state leads directly to Küppers–
Lortz-type spatio-temporal convective chaos and hence that it may be amenable to
weakly nonlinear theory (Heikes & Busse 1980a ,b; Niemela & Donnelly 1986; Zhong,
Ecke & Steinberg 1991; Rodrı́guez et al. 1992; Tu & Cross 1992; Cross, Meiron & Tu
1994; Hu, Ecke & Ahlers 1997; Ponty, Passot & Sulem 1997; Hu et al. 1998; Cox &
Matthews 2000; Bajaj, Ahlers & Pesch 2002; Becker & Ahlers 2006a ,b; Jayaraman
et al. 2006). While this form of spatio-temporal dynamics is inherently associated with
the rotation of the system, its analysis has largely been restricted to considerations
of the interplay between the Coriolis force and gravitational buoyancy, neglecting the
effects of centrifugal accelerations.

It has long been understood that any rotating stratified fluid in a container must
exhibit a centrifugally driven large-scale circulation (LSC) (Barcilon & Pedlosky
1967; Koschmieder 1967; Rossby 1969; Brummell, Hart & Lopez 2000). When the
centrifugal acceleration is weak compared with that of gravity, the centrifugally
driven LSC is negligible compared with the flow driven by gravitational buoyancy for
thermal forcing only slightly beyond critical, and the effects of the centrifugal force
are usually neglected in theoretical treatments and in interpretations of laboratory
experiments. However, since the emergence of convection is supercritical, very near
the onset the centrifugally driven LSC with small but finite amplitude is dominant in
organizing the flow. As noted by Rossby (1969), ‘[w]hen the apparatus is rotated, a
radial acceleration, which increases with radius, is established . . . . However, since this
radial acceleration destroys the horizontal uniformity, which is a basic assumption
in the Bénard convection problem, it is essential that its influence be minimized.
Obviously the radial acceleration cannot be eliminated entirely’.

There have been previous studies of the impact of the centrifugal buoyancy on
rotating convection, but the nonlinearity of the problem had restricted the scope
of the investigations. Since the basic state is no longer the trivial conduction state,
it needs to be determined from a nonlinear simulation of the governing equations.
Substantial insight into the problem came from axisymmetric considerations, but the
use of the fast rotation limit (to simplify the problem in the asymptotic regime) reduced
the applicability of the results, in particular with regard to laboratory experiments
(Homsy & Hudson 1969, 1971; Torrest & Hudson 1974; Hart 2000). Whereas most
of those efforts were addressing the question of under what conditions the centrifugal
buoyancy needs to be accounted for, Koschmieder (1993) took the following view:
‘Actually of more interest is the question of what is the smallest acceleration ratio
[gravitational to centrifugal] at which the centrifugal circulation in an unstably
stratified rotating fluid layer can be neglected’. In this paper, we address a different
issue; we wish to gain a deeper understanding of the onset of thermal convection
in an enclosed rotating cylinder, particularly in parameter regimes typically accessed
experimentally, where Küppers–Lortz dynamics are observed near the onset and the
ratio of centrifugal acceleration to gravitational acceleration is small and hence the
centrifugal buoyancy effects have typically been neglected.

Recently, there has been an interest in studying the effects of the centrifugal
force with an emphasis on reconciling the results from reduced models with
laboratory observations and numerical simulations of the Navier–Stokes–Boussinesq
equations (Becker et al. 2006), although it has been noted that incorporating the
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centrifugal force into a reduced partial differential equations model framework (e.g.
the Swift–Hohenberg and Ginzburg–Landau models) is difficult if not impossible
because of the fact that the additional term makes the Navier–Stokes equations
inhomogeneous (Scheel 2007).

Our earlier studies have shown that even a relatively weak centrifugal force can have
a substantial impact on the dynamics of axisymmetric rotating convection, where we
have restricted the simulations to be axisymmetric (Lopez, Rubio & Marques 2006b).
However, the onset of three-dimensional instabilities occurs at lower parameter values,
and so those results do not address the onset of complicated dynamics in the system.
More recently, Lopez & Marques (2009) showed that for cylinders of radius-to-height
aspect ratios of order one, the dynamics are governed by a complicated tangle of
codimension-two bifurcation points and that the onset of three-dimensional flow
is substantially simplified as the relative strength of the centrifugal buoyancy is
increased. However, the extensive Küppers–Lortz-like dynamics were not evident in
such low-aspect-ratio cylinders. In this paper, we address these issues in cylinders of
aspect ratios of order 10, where Küppers–Lortz dynamics near the onset are prevalent
for the rotation rate considered.

In § 2, the governing equations and the numerical techniques to solve them are
discussed. Section 3 contains four subsections detailing the linear stability analysis
and nonlinear saturation of rotating convection, both neglecting and accounting for
the centrifugal force. A discussion of the evidence for the centrifugally driven LSC
in existing laboratory studies is presented in § 4, followed by the implications of our
numerical study, including a discussion of the role played by the spectral gaps in
pattern formation, in § 5.

2. Governing equations and numerical technique
Consider the flow in a circular cylinder, with no-slip boundary conditions, of radius

r0 and depth d , rotating with an angular frequency ω. The endwalls are maintained
at constant temperatures, namely T0 − �T/2 at the top and T0 +�T/2 at the bottom,
with an insulating sidewall. The Boussinesq approximation is implemented, treating all
fluid properties as constant except for a linear variation of density with temperature in
the gravitational and centrifugal buoyancy terms. The system is non-dimensionalized
using d as the length scale, d2/ν as the time scale (ν is the kinematic viscosity),
ν2ρ0/d

2 as the pressure scale (ρ0 is the density at mean temperature T0) and �T (the
difference between the top and bottom temperatures) as the temperature scale. In a
frame of reference rotating at rate ω, the non-dimensional governing equations are

(∂t + u · ∇)u = −∇p + ∇2u +
Ra

σ
Θ z + 2Ωu × z − RaFr

σγ
(Θ − z)r, (2.1)

(∂t + u · ∇)Θ = w + σ −1∇2Θ, ∇ · u = 0, (2.2)

where u = (u, v, w) is the velocity in cylindrical coordinates (r, θ, z); p is the dynamic
pressure; r is the radial unit vector in the r-direction; z is the vertical unit vector in
the z-direction; and Θ is the temperature deviation with respect to the conductive
linear temperature profile. The relationship between Θ and the non-dimensional
temperature T is given by

T = T0/�T − z + Θ, (2.3)

where T0/�T − z is the conductive temperature profile.



340 A. Rubio, J. M. Lopez and F. Marques

There are five independent non-dimensional parameters:

Rayleigh number Ra = αgd3�T /κν,

Coriolis number Ω = ωd2/ν,

Prandtl number σ = ν/κ,

aspect ratio γ = r0/d,

Froude number Fr = ω2r0/g,

where α is the coefficient of volume expansion, κ the thermal diffusivity and g the
acceleration because of gravity. The boundary conditions (in a frame of reference
rotating at rate ω) are as follows:

r = γ, Θr = u = v = w = 0;

z = ±0.5, Θ = 0, u = v = w = 0.

The governing equations are solved using the second-order time-splitting of
Hughes & Randriamampianina (1998), combined with a pseudo-spectral method
for the spatial discretization, utilizing a Galerkin–Fourier expansion in the azimuthal
coordinate θ and the Chebyshev collocation in r and z. Following Orszag & Patera
(1983), we have used the combinations u+ = u + iv and u− = u − iv in order to
decouple the linear diffusion terms in the momentum equations. For each Fourier
mode, the resulting Helmholtz equations for Θ , w, u+ and u− have been solved
using a diagonalization technique in the two coordinates r and z. The coordinate
singularity at the axis (r = 0) is treated following the prescription in Fornberg (1998),
which guarantees the regularity conditions at the origin needed to solve the Helmholtz
equations (Mercader, Net & Falqués 1991).

The code has been validated on a number of convection problems in rotating
cylinders (Lopez, Rubio & Marques 2006b; Lopez et al. 2007; Marques et al. 2007;
Rubio, Lopez & Marques 2008, 2009; Lopez & Marques 2009), establishing resolution
requirements over a wide range of parameters. For the cases considered in this paper,
nr = 64 and nz =24 Chebyshev modes in r and z, respectively, were employed except
where noted otherwise. For cases in which the solution is non-axisymmetric, nθ =184
Fourier modes in θ were used. The time discretization used δt � 0.0225 viscous
time units. For the majority of the simulations, the Coriolis number Ω = 19.7, the
Prandtl number σ = 4.5 and the aspect ratio γ = 11.8 are fixed to correspond to
those in relevant experiments (Thompson, Bajaj & Ahlers 2002), and we consider
variations in Ra for Fr = 0 and 8.82 × 10−3 to illustrate the differences between the
route to complexity in the idealized case neglecting the centrifugal buoyancy and that
seen in laboratory experiments with small but finite centrifugal acceleration. Even
for 0 < Fr � 1, the centrifugal buoyancy may not be neglected a priori compared
with gravitational buoyancy, since the two act in orthogonal directions (r and z,
respectively).

The linear stability analysis, discussed in § § 3.1, 3.3 and 4, was performed via direct
numerical stability analysis. First, a steady axisymmetric basic state is computed
at some point in parameter space, and its stability is determined by introducing
small random perturbations into all azimuthal Fourier modes. For sufficiently small
perturbations, the nonlinear couplings between Fourier modes are negligible (below
the round-off numerical noise), and the growth rates (the real parts of the eigenvalues)
and structure of the eigenfunctions corresponding to the fastest growing perturbation
at each Fourier mode emerge from time evolution. This is tantamount to a matrix-free
power method in which the actions of the Jacobian matrices for the perturbations
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Figure 1. Average Nusselt number variation with Ra (and ε) for Fr =0 (open circles) and
Fr = 8.82 × 10−3 (filled circles), for fixed Ω = 19.7, σ = 4.5 and γ = 11.8. The dotted curve
shows Nu − 1 for the axisymmetric base state with Fr = 8.82 × 10−3 when it is stable to
three-dimensional perturbations. The dashed vertical line shows the estimate of Chandrasekhar
(1961) for the onset of convection for Ω = 19.7 in an unbounded layer.

are given by time integration of the Navier–Stokes–Boussinesq equations with the
aforementioned initial conditions. Using this method, a direct comparison between
the stability analysis of the Fr = 0 case, whose basic state is the trivial conduction
state, and the Fr = 8.82 × 10−3 case, whose non-trivial basic state must be computed
in the axisymmetric subspace, can be made. Furthermore, it is very efficient, as
the exponential growth or decay of the perturbations is established in a relatively
short evolution time (there is no need to evolve the disturbances until they saturate
nonlinearly), and by using estimates of the real parts of the eigenvalues from
these growth/decay rates for a small number of points in parameter space in the
neighbourhood of a bifurcation point, linear interpolation of the rates to zero provides
a very good estimate of the bifurcation point. Moreover, the same technique is used to
study the linear stability of three-dimensional rotating waves that have been computed
in appropriate Fourier subspaces.

3. Results
The heat transfer properties of a solution are characterized by the Nusselt number,

the ratio between the heat transfer of the solution considered and the heat transfer
of the conductive state, both through the top lid. It is given by

Nu = − 1

πγ 2

∫ r=γ

r=0

∫ θ=2π

θ=0

∂T

∂z

∣∣∣
z=0.5

r dr dθ. (3.1)

Figure 1 shows the time-averaged Nusselt number as a function of Ra for
fully saturated simulations at Ω = 19.7, γ = 11.8 and σ = 4.5, both neglecting and
incorporating the centrifugal force, Fr = 0 and Fr =8.82 × 10−3, respectively. When
the centrifugal force is neglected, the average Nusselt number grows supercritically
from unity. With the centrifugal force accounted for, the solution is axisymmetric
with a Nusselt number greater than unity for 0< Ra < 2380. These axisymmetric
patterns, described in § 3.3, grow smoothly in amplitude near the critical Ra given
by Chandrasekhar (1961), resulting in a rounding of the Nusselt number curve. At
Ra =2380, this axisymmetric state loses stability to three-dimensional perturbations.
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3.1. Fr= 0 linear stability analysis

The linear stability analysis of the conduction state (neglecting the centrifugal
buoyancy) was first performed, using a complete basis for the perturbations and
allowing for Hopf bifurcations, by Goldstein et al. (1993), who showed that there
are two types of convective modes, namely the wall modes consisting of a uniformly
precessing wave made up of pairs of hot and cold plumes localized radially near
the sidewall and the bulk modes consisting of convective motions in the interior of
the cylinder. When the cylinder is rotating sufficiently fast, wall modes are the first
modes to bifurcate from the conduction state as the temperature across the cylinder is
increased, while the bulk modes are the primary bifurcation modes for slower rotation
speeds at which Küppers–Lortz dynamics are observed near the onset in experiments.
It is this regime in which the bulk modes are the primary convective instability
that we focus on in this paper. Goldstein et al. (1993) observed that the bulk mode
eigenfunctions are localized about the rotation axis and that eigenfunctions with even
azimuthal wavenumbers are invariant to Rπ · K , whereas those with odd azimuthal
wavenumbers are invariant to Rπ. The actions of these symmetries on the velocity
and temperature are

Rπ(u, v, w, Θ)(r, θ, z, t) = (u, v, w, Θ)(r, θ + π, z, t), (3.2)

K(u, v, w, Θ)(r, θ, z, t) = (u, v, −w, −Θ)(r, θ, −z, t). (3.3)

Goldstein et al. (1993) also found that small variations in the parameters (Ra, Ω , σ

and γ ) change which bulk mode is first to bifurcate from the conduction state, and so
with small adjustments in the parameters it is relatively easy to find high-codimension
points at which a number of different bulk modes bifurcate simultaneously. The
question naturally arises as to how do these high-codimension bifurcations affect
the nonlinear dynamics near the onset. Even though this behaviour occurs very near
the onset, because of mode interactions it is highly nonlinear, and we shall see that
it is not readily amenable to weakly nonlinear treatments.

Figure 2(a) shows the marginal stability curves for Fourier modes with azimuthal
wavenumbers m ∈ [0, 10]. The complicated interweaving of the curves is hidden by
their proximity, and all 11 curves appear essentially as a single thick line. In order
to disentangle the curves, the same data is re-plotted in figure 2(b) in terms of
ε = (Ra − Rac(Ω))/Rac(Ω), where Rac(Ω) is the critical Ra at which the conduction
state loses stability for a laterally infinite rotating fluid layer (Chandrasekhar 1961).
We also find that for a given Ω , a number of modes of one parity (m odd or even)
bifurcate from the conduction state at lower ε than any mode of the other parity
does and that which parity is first to bifurcate varies with Ω .

Figure 3 shows the marginal stability curves for Fourier modes with m ∈ [0, 34]
and Ω = 19.7, σ =4.5, γ =11.8 and Fr =0. For these parameters, our linear stability
analysis of the Fr= 0 case shows that the m =5 perturbation is the first to bifurcate
at Ra ≈ 2371.2 as Ra is increased, followed rapidly by a number of other odd modes
and then by a set of even modes. The first 10 modes bifurcate from the conduction
state by Ra ≈ 2371.7, a variation of about 0.02 % in Ra.

Figure 4 shows the structure of the first four eigenmodes to bifurcate from
the conduction state with increasing Ra. All four eigenmodes precess slowly (the
values of their precession rates ∂θ/∂t are −1.67 × 10−5 for m = 5, −9.98 × 10−6 for
m =3, −2.69 × 10−5 for m =7 and −6.90 × 10−6 for m =1, with the negative sign
indicating that the precession is retrograde) and closely resemble the bulk modes
found in Goldstein et al. (1993), with the convection concentrated about the axis,
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Figure 2. (a) Marginal stability curves (solid lines) for the eigenvectors corresponding to
Fourier modes 0–10 of the linear stability analysis of rotating convection with σ = 4.5, γ = 11.8
and Fr = 0. A dotted vertical line indicates Ω =19.7, and a dashed line gives Chandrasekhar’s
estimate for the onset of convection in an infinite layer. (b) The same data as in (a) given in
terms of ε = (Ra − Rac(Ω))/Rac(Ω), where Rac(Ω) is given by Chandrasekhar’s estimate for
the onset of convection. Even (odd) modes are shown as the solid (dashed) lines. The dotted
vertical line is at Ω =19.7.
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Figure 3. Critical thermal driving required for linear stability for eigenvectors corresponding
to Fourier modes 0–34 at Ω = 19.7 for σ = 4.5, γ = 11.8 and Fr = 0. The first four modes to
bifurcate from the conduction state, in order, are m= 5, 3, 7 and 1 and are shown as filled
circles.
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Figure 4. Snapshots of the first four eigenmodes to bifurcate from the conduction state as Ra
is increased from 2371.2 to 2371.7, for Ω = 19.7, σ = 4.5, γ = 11.8 and Fr = 0; their azimuthal
wavenumbers are indicated.
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diminishing rapidly with increasing radius. When these are evolved nonlinearly, the
saturated solutions, whether computed in the full three-dimensional space or in
a subspace corresponding to the representative Fourier mode of the perturbation,
are quite different in their spatial and temporal structure from the small-amplitude
perturbations of the linear stability analysis. Although the spectrum is discrete because
of the finite confined geometry of the problem, the very small gaps in the spectrum
make the application of weakly nonlinear dynamical systems approaches problematic.
Since there are several distinct modes with very similar growth rates near the onset,
one cannot a priori assume that the mode which first bifurcates will saturate
nonlinearly without influence from nearby decaying modes. The whole concept of
a low-dimensional centre manifold describing the weakly nonlinear dynamics near
the onset becomes questionable because of the tight spectral gaps. With several
near-critical modes, in principle, a high-dimensional centre manifold theory could be
developed. When there are only two modes that are near critical, codimension-two
dynamics have been successfully described and compared with experiments and fully
nonlinear simulations in a number of fluid problems (e.g. Barkley, Tuckerman &
Golubitsky 2000; Marques, Lopez & Shen 2002; Lewis & Nagata 2003; Lopez,
Cui & Lim 2006a; Avila et al. 2008), and there are examples of codimension-three
double Hopf bifurcations as well (Marques, Gelfgat & Lopez 2003), but with several
such modes, the centre manifold description becomes unwieldly and impractical.

3.2. Fr = 0 secondary instabilities

When solutions at Ω = 19.7, σ = 4.5, γ =11.8 and Fr= 0 with Ra just above the
value required for linear instability of the conduction state are allowed to saturate,
exceedingly long transient times are encountered. As noted earlier, these patterns
emerge supercritically from the conduction state. Snapshots of the nonlinearly
saturated temperature perturbation Θ at Ra = 2372, 2373 and 2374 are shown in
figures 5(a)–5(c), respectively. These solutions were time integrated to over 158 000
viscous times, corresponding to over 22 days in equivalent laboratory experiments.
All these solutions are very different from the pure eigenmodes shown in figure 4. At
Ra = 2372, a square lattice pattern centred and localized about the axis of rotation
slowly precesses in the retrograde direction, exhibiting a barely noticeable degree of
roll switching (supplementary movie 1 available at journals.cambridge.org/flm shows
this evolution). It is difficult to say whether this solution has evolved beyond its
initial transient, and determining the characteristics of this potentially quasi-periodic
state would require a time integration well beyond the 158 000 viscous times already
computed. We also note that a Fourier decomposition of this state shows that it has
significant power in at least six Fourier modes m ∈ [0, 91], as can be seen in figure 6(a)
which shows the L2-norm of the kinetic energy associated with each Fourier mode of
the saturated solutions as shown in figures 5(a)–5(c), where the L2-norm of a scalar
function f is given by

‖f ‖2 =

[∫ 1/2

−1/2

∫ 2π

0

∫ γ

0

f 2(r, θ, z) r dr d θ dz

]1/2

. (3.4)

At slightly higher Ra = 2373, the square lattice fills the fluid layer to a larger
radius, and roll switching within the confines of the square lattice is clearly seen
in supplementary movie 2. By Ra = 2374, the pattern fills the entire cell, and a
seemingly quasi-periodic roll-switching state is observed (see supplementary movie 3).
The growing extent of the square lattice for Ra = 2373 and 2374 is necessarily
accompanied by an increase in amplitude of the higher Fourier modes required to
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(a) Ra = 2372 (b) Ra = 2373 (c) Ra = 2374

(d) Ra = 2390 (e) Ra = 2390 ( f ) Ra = 2420

Figure 5. Snapshots of the temperature perturbation Θ at mid-height z = 0 for Ω = 19.7,
σ = 4.5, γ = 11.8, Fr = 0 and indicated the Ra, with the colour levels of Θ ∈ [−5ε, 5ε] (black
to white).
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Figure 6. The L2-norm of the time-averaged kinetic energy associated with Fourier modes
m ∈ [0, 91] for simulations with Ω = 19.7, σ =4.5, γ = 11.8, Fr = 0 and Ra as indicated.
Time-averaging was done over 60 000 viscous times for each solution.

resolve the square pattern at increasing radius, as can be seen in figures 6(b) and
6(c). At higher Ra ∈ [2386, 2392], S-shaped roll patterns slowly precess for long times
before more complicated behaviour in space and time sets in. This can be seen in the
Ra =2390 time series shown in figure 7, where the roll pattern shown in figure 5(d)
persisted for over 25 000 viscous times before its Rπ-rotational symmetry was lost,
resulting in states such as those in figure 5(e) with lines of defects gliding through
the layer. Solutions at higher Ra exhibited global roll switching early in their time



346 A. Rubio, J. M. Lopez and F. Marques

50 00025 0000
t

0.005

0.010

0.015

N
u 

–
 1

0.020

0.025

Ra = 2390

Ra = 2400

Ra = 2410

Ra = 2420

A

Figure 7. Time series of Nu − 1 at Fr = 0, Ω = 19.7, σ =4.5 and γ = 11.8, for Ra
as indicated.

integrations, but all of them took on a more complicated temporal structure at later
times as indicated by the Ra = 2400, 2410 and 2420 time series shown in figure 7. For
both types of patterns, with either long stretches of quasi-steady behaviour or global
roll switching, the onset of complex time behaviour is associated with a breaking
of the Rπ symmetry with lines of defects propagating relatively quickly across the
cylinder in arbitrary directions.

Qualitative features of patterns such as those in figure 5(f ), including defects
originating at the sidewall and gliding through the fluid layer leading to patches of re-
orienting rolls, have been reported in simulations of the Swift–Hohenberg equations
in finite cylinders (Fantz et al. 1992). However, we are not aware of any report
of the localized square patterns shown in figures 5(a) and 5(b) from simulations
of reduced-equation models of rotating convection. Localized square patterns in
rotating convection have been observed experimentally (Bajaj et al. 1998), but they
have presented something of an enigma (Ahlers 2006) when trying to reconcile
them with theory based on the assumption of horizontal periodicity. Theoretical
treatments of square periodic lattices have shown them to be unstable, and yet
laboratory experiments and numerical simulations of the Navier–Stokes–Boussinesq
equations in confined rotating cylinders (neglecting the centrifugal buoyancy) have
found states in which localized square patterns in the interior coexist with wall-
localized plumes near the onset of bulk convection (Bajaj et al. 1998; Sánchez-Álvarez
et al. 2005; Marques & Lopez 2008). However, localized square patterns without the
prior presence of wall-localized plumes had not been previously reported in either
laboratory experiments or numerical simulations. Of course, it is not clear whether
there is any correspondence between the square tessellations in horizontally periodic
problems and the patterns with locally fourfold symmetry found in laterally confined
rotating convection. In our opinion, the two patterns are unrelated. The square
patterns localized about the axis near the onset appear to be a nonlinear combination
of the first several Fourier eigenmodes to bifurcate from the conduction state (the
first four eigenmodes are shown in figure 4).

3.3. Fr= 0.00882 linear stability analysis

When the centrifugal force is not neglected, any non-zero Ra will result in an
LSC in the fluid layer. However, for Fr small and Ra sufficiently above the value
required for three-dimensional convection, this fluid motion is quite weak compared
with the gravitational buoyancy-driven flow and often can be ignored. In theoretical
models of rotating convection in infinite or periodic layers, the centrifugal buoyancy
must be ignored, as it varies with the radial distance from the axis of rotation,
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(a) Ra = 2320 (b) Ra = 2340 (c) Ra = 2360

Figure 8. Temperature perturbation Θ at z = 0 for Ω = 19.7, σ = 4.5, γ = 11.8,
Fr = 8.82 × 10−3 and Ra as indicated, with color levels of Θ ∈ [−0.02, 0.02] (black to white).

violating the underlying assumptions of either horizontal translation invariance
or periodicity; the location of the axis of rotation becomes distinguished and the
centrifugal buoyancy becomes unbounded at large distances from the rotation axis.
Numerical simulations neglecting the centrifugal force can agree quite well with
laboratory experiments provided that the parameter regime explored is sufficiently
beyond the onset of gravitational buoyancy-driven convection, depending on the
ratio of centrifugal to gravitational accelerations. However, the finite-amplitude
centrifugally driven LSC is necessarily the dominant flow very near the supercritical
onset of gravitational buoyancy-driven convection. For Ω = 19.7 , σ = 4.5, γ = 11.8
and Fr = 8.82 × 10−3 (corresponding to the actual centrifugal force observed in similar
laboratory experiments) this LSC is a target pattern that varies with parameters. Some
examples are shown in figure 8. For small Ra, circular concentric rolls form at the
periphery of the cylinder, strengthening and developing new rolls into the interior
with increasing Ra, until near the onset of three-dimensional convection, where a
target pattern fills the entire cylinder. The same development of the centrifugally
driven LSC has been reported by Daniels (1980) from consideration of a simplified
rotating convection problem with stress-free boundary conditions and restricted to
steady axisymmetric flow using a perturbation analysis, as well as in the laboratory
experiments of Koschmieder (1967, 1993).

For Ra ∈ [2370, 2394], target patterns were computed in the axisymmetric subspace,
and then their stability was determined by subjecting them to random perturbations
in Θ with the L2-norm of order 10−10 across all Fourier modes. The linear stability
analysis consisted of monitoring the exponential growth and decay of the amplitude
of the perturbations associated with each Fourier mode. While the perturbations
have the L2-norm of order 10−10, the nonlinear coupling between them is of the
order of 10−20, ensuring that the nonlinear time evolution behaves as a direct linear
stability analysis plus an error 10 orders of magnitude smaller than any of the relevant
quantities. Time integration is tantamount to a generalization of the power method
for finding eigenvalues with largest positive real part. After temporal evolution of a
few viscous adjustment times, we find that for each Fourier mode the eigenfunction
associated with the eigenvalue with the largest real part clearly emerges. A typical
time series resulting from this process is shown in the first few thousand viscous
times of figure 9(a), which shows the linear growth and decay of perturbations
associated with Fourier modes m ∈ [1, 92] followed by the nonlinear saturation of an
m = 23 rotating wave (described in detail in the following section). The results of the
linear stability analysis are shown in figures 10 and 11, consisting of the critical Ra
values for Ω = 19.7, σ = 4.5, γ = 11.8 and Fr = 8.82 × 10−3 and the eigenfunctions
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Figure 9. Time series of the L2-norm of the kinetic energy associated with each Fourier
mode for simulations with Ra = 2380, Ω = 19.7, σ =4.5, γ = 11.8 and Fr = 8.82 × 10−3. (a)
Saturation from below; the initial condition was an axisymmetric target pattern with a
random perturbation of order 10−10 across all Fourier modes. (b) Decay from above; the
initial condition was a fully developed solution with Ra= 2400 as shown in figure 13(c). In
both cases the modal energies with m= 0, 23, 43 and 69 are shown as black lines, and all other
modal energies are shown as grey lines.
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Figure 10. Critical Ra for disturbances with azimuthal wavenumber m at Ω = 19.7, σ =4.5,
γ = 11.8 and Fr = 8.82 × 10−3.

(a) m = 23 (b) m = 22 (c) m = 30 (d) m = 29

Figure 11. Snapshots of the four eigenmodes with fastest growth rate to bifurcate from the
axisymmetric basic state at Ra = 2380, Ω =19.7, σ = 4.5, γ = 11.8 and Fr = 8.82 × 10−3.
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(a) All Fourier modes (b) m = 0 component (c) m = 23 component

Figure 12. Temperature perturbation Θ at z = 0 for Ra = 2380, Ω = 19.7, σ = 4.5, γ = 11.8
and Fr = 8.82 × 10−3; (a) shows the complete solution; (b) shows its axisymmetric component;
and (c) shows its m= 23 component, with color levels of Θ ∈ [−5ε, 5ε] (black to white).

corresponding to the first four non-axisymmetric perturbations to bifurcate from the
basic state as Ra is increased; their precession rates, ∂θ/∂t , are 2.17 × 10−5 for m =23,
−2.51 × 10−6 for m =22, 1.26 × 10−5 for m = 30 and −1.33 × 10−5 for m =29, with the
sign indicating whether the precession is retrograde (negative) or prograde (positive).
The first non-axisymmetric perturbation to bifurcate is the m =23 perturbation shown
in figure 11 at Ra = 2378.6, followed by the m =22 perturbation at Ra =2380.02. The
critical Ra is determined from computing the growth rates from time series such as
that shown in figure 9(a) at a few different Ra bracketing the zero growth rate value
and then estimating the critical Ra using linear interpolation to zero growth rate.

Unlike the Fr =0 case, when Fr is set to that of the analogous laboratory
experiments, a single Fourier mode solution emerging from a supercritical Hopf
bifurcation is observed immediately at the onset of three-dimensional convection. For
the parameter space explored, an m =23 rotating wave was observed; a snapshot
of the nonlinear saturated solution is shown in figure 12(a). The time series of
this evolution (figure 9a) shows that the m = 23 rotating wave fully saturates in
about 12 000 viscous times. Very near the Hopf bifurcation, the saturated solution
is essentially a superposition of the axisymmetric basic state and a scalar multiple
of the m =23 eigenmode. Figure 12(b) is the axisymmetric m = 0 component of the
nonlinear saturated rotating wave shown in figure 12(a), which is essentially the
underlying LSC, and figure 12(c) is the m =23 Fourier component of the rotating
wave which essentially has the same structure as the m = 23 Hopf eigenmode shown
in figure 11(a).

3.4. Fr = 0.00882 secondary instabilities

Near Ra = 2382, the m =23 rotating wave described above loses stability to an m =6
Fourier mode perturbation in a supercritical secondary Hopf bifurcation. (This was
determined using the direct numerical stability analysis using the m =23 rotating
wave as the basic state.) Temporal evolution to the nonlinear saturated state results
in a pattern with sixfold symmetry near the axis of rotation, giving a mixed-mode
modulated rotating wave with m =23 and m =6.

Increasing Ra slightly from 2382 to 2386, the modulated rotating wave solution
exhibits a ratcheting behaviour, similar to that observed by Gorman et al. (1996)
and analysed by Golubitsky, LeBlanc & Melbourne (2000) in circular flames. A
snapshot is shown in figure 13(a). All aspects of the dynamics are not the same
as in the flame experiment which has O(2) symmetry in azimuth, whereas the
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(a) Ra = 2386 (b) Ra = 2390 (c) Ra = 2400 (d) Ra = 2420

Figure 13. Temperature perturbation Θ at z = 0 for Ω = 19.7, σ = 4.5, γ =11.8,
Fr = 8.82 × 10−3 and indicated Ra, with colour levels of Θ ∈ [−5ε, 5ε] (black to white).
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Figure 14. Time series of Nu − 1 at Ω =19.7, σ = 4.5, γ = 11.8, Fr =8.82 × 10−3

and Ra as indicated.

rotating convection problem only has SO(2) symmetry in azimuth (for discussions
of the dynamic consequences of these two symmetries, particularly in the context of
hydrodynamic instabilities, see Crawford & Knobloch 1991; Knobloch 1994, 1996),
but the ratcheting is very similar. A snapshot of the ratcheting state is shown in
figure 13(b), but the spatio-temporal nature of this state at Ra =2390 is better
appreciated from supplementary movie 4.

By Ra = 2400, roll-switching behaviour is observed on top of the underlying
ratcheting lattice found at the slightly lower Ra. A snapshot of one such solution
is shown in figure 13(c), and supplementary movie 5 illustrates the dynamics. With
increasing Ra, the dynamics resemble the Küppers–Lortz-like dynamics described by
the experimentalists, where roll-switching domain chaos is observed. A snapshot of
a typical solution is shown in figure 13(d). However, the time series for this state
shows excursions to states exhibiting simpler temporal behaviour, as highlighted in
the box labelled A in figure 14 for Ra = 2420 (supplementary movie 6 shows the
temporal evolution of this state over the time indicated by box A). Supplementary
movie 7 shows the more typical dynamic behaviour of this flow state over the time
marked by box B in figure 14. For comparison, the flow state with all the same
parameters, except for Fr= 0, is shown in supplementary movie 8; it corresponds
to time evolution over the period shown by box A in figure 7. At Ra = 2420, the
spatio-temporal characteristics are almost indistinguishable between the Fr = 0 and
the Fr = 8.82 × 10−3 solutions, except that in the Fr 	= 0 case, the axis r =0 remains
a distinguished point and the pattern shows intermittent circular organization at the
axis.
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(a)

(b)

Ra =1167

Ra = 1582

Ra = 1883

Ra =1167 Ra = 1582 Ra = 1883

Figure 15. Contours of Θ for numerical simulations following Koschmieder (1967) with
Ω = 1.48, σ = 877, γ = 10.3 and Fr = 0.025. (a) Meridional planes r ∈ [0, γ ], z ∈ [−1/2, 1/2] of
solutions with indicated Ra. (b) Contours of Θ in a horizontal plane with z = 0 for the cases
shown in (a). Ten positive (black) and negative (grey) contours are spaced quadratically for
Θ ∈ [−0.2, 0.2].

4. Experimental evidence of the centrifugally driven large scale circulation
So far, our discussion has been focused on parameter regimes of typical laboratory

experiments in which the Coriolis force was dominant over the centrifugal force,
and we have seen that if the centrifugal force, although small, is not neglected,
the LSC smoothly evolves into a target pattern near the onset of gravitational
buoyancy-driven convection. Such a development has been described from a series
of laboratory experiments reported by Koschmieder (1967) in which the parameter
regime was carefully selected so as to have the centrifugal buoyancy dominant
over the Coriolis. The patterns he observed are consistent with the axisymmetric
flow solutions of Torrest & Hudson (1974) and Daniels (1980), even though the
experimental apparatus used for the study had substantial issues in controlling the
thermal boundary conditions at the sidewall, which resulted in the stabilization
of otherwise-unstable axisymmetric patterns in the non-rotating case. Despite the
sidewall issues, the rationale for the emergence of the target patterns being due to
the centrifugally driven LSC (Koschmieder 1993) is consistent with the idealized
results of Torrest & Hudson (1974) and Daniels (1980). To further explore this, we
have conducted a number of simulations in the parameter regime investigated by
Koschmieder (1967), with insulating sidewall boundary condition, and have found
excellent agreement with his observations. A sample of those simulations is given in
figure 15. We have translated his dimensional parameters into our non-dimensional
parameters, and the cases in the figure correspond to a moderate Froude number
sequence. The parameters are the aspect ratio γ =10.3, slow rotation with the Coriolis
number Ω =1.48, a very high Prandtl number σ = 877 and the Froude number
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Figure 16. Time series of the L2-norm of the kinetic energy associated with each Fourier
mode for a simulation with Ra = 1883, Ω = 1.48, σ = 877, γ = 10.3 and Fr = 0.025. The initial
condition was an axisymmetric target pattern with a random perturbation of order 10−10

across all Fourier modes. The modal energies with m= 25 and 26 are shown as black lines,
and all other modal energies are shown as grey lines.

Fr= 0.025 (about three time larger than that of the results presented in the previous
section). The three Ra cases shown in the figure correspond to those in figures 8, 9
and 10 of Koschmieder (1967) and show the same development of the target pattern
with increasing Ra and in particular the same number of concentric rolls. We have
also conducted a direct numerical linear stability analysis of the Ra = 1883 case
and found that this solution is stable to three-dimensional perturbations, although
perturbations with Fourier modes m =25 and 26 have nearly zero decay rates. The
m =25 perturbation is decaying exponentially with a decay constant of −4.2357 × 10−7

per viscous time, and the m =26 case has a decay constant of −4.7873 × 10−6 per
viscous time (see figure 16). In a photo of a similar case with Ω = 2.96 and Fr = 0.1
in Koschmieder (1967), a high-wavenumber perturbation is evident, much like the
m =23 waviness we describe in figure 12(a).

There also provides evidence for the centrifugal buoyancy in the more typical
parameter regimes explored experimentally, where the Coriolis dominates over the
centrifugal force, but because of the presence of other effects, it has been difficult
to unambiguously identify this with the centrifugal buoyancy without detailed
simulations. Bajaj et al. (2002) reported the intermittent observation of target patterns
near the onset, and even beyond the onset where the dynamics are Küppers–Lortz-like,
the origin is also intermittently distinguished, much as we observe in supplementary
movies 6 and 7, whereas for the same parameters but with Fr= 0, supplementary
movie 8 does not show any distinguished feature at r = 0.

An interesting exercise looking at long-time averages of Küppers–Lortz-type
dynamics was conducted by Ning et al. (1993), although their intent at the time was
not motivated by considerations of the centrifugal buoyancy. In a regime displaying
Küppers–Lortz-like dynamics (together with a wall mode), they took very long-time
sequences of shadowgraph images and time averaged them. As the flow state is not
periodic, very long-time averages were needed, and these converged to a target pattern.
This was consistent with what one would expect in a circular container, that the time
average should have the same symmetry as the container, but what perhaps was not
appreciated at the time was the spatial structure of the time-averaged pattern; it has
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(a) Fr = 0 (b) Fr = 0.0128 (c) Experiment

(d) Fr = 0 (e) Fr = 0.0128 (f ) Experiment

Figure 17. Rotating convection in a cylinder with Ra = 2.08 × 105 (ε = 0.053), Ω = 1090,
σ = 6.4, γ =2.5 and Fr = 0 or Fr = 0.0128; (a)–(c) are snapshots of a Küppers–Lortz-like state
with a precessing wall mode, and (d) and (e) are the corresponding long-time averages. The
experimental results are from Ning et al. (1993). A grid resolution of nr = 64, nz = 32 and
nθ =220 was used in the simulations.

the same structure as the (unstable) axisymmetric LSC at that point in parameter
space. To show this, we have computed the same case with the corresponding values
of the parameters (Ra = 2.08 × 105, γ =2.5, Ω = 1090, σ = 6.4 and Fr =0.0128, where
Ra was calculated by considering the given reduced Rayleigh number, ε = 0.053, and
assuming Rac given by Chandrasekhar’s estimate for the onset of bulk convection) as
well as with Fr = 0 and determined the long-time averages of these (taking longer-time
averages until they converged). For these calculations nr = 64 and nz = 32 Chebyshev
modes were used in r and z, respectively, and nθ =220 Fourier modes were used in θ .
The results, along with the experimental results are shown in figure 17. It is clear
that the Fr 	=0 average is the LSC, and it agrees with the long-time average from
the experiment, while the Fr = 0 average is the conduction state which is horizontally
featureless. So, by taking long-time averages, Ning et al. (1993) provided experimental
evidence of the centrifugally driven LSC in a Coriolis-dominated parameter regime.
We note that the azimuthal wavenumber of the wall mode component of the flow
differs between the experiment and our simulation, but this is not surprising, as in
the high-Ω regime there is a very large multiplicity of stable states because of a wide
Eckhaus–Benjamin–Feir band, and which state is obtained is very sensitive to initial
conditions (Lopez et al. 2007; Marques & Lopez 2008).

5. Conclusions
A detailed analysis of the onset of Küppers–Lortz dynamics in a finite rotating

cylinder has been conducted, and particular attention has been paid to the effect of
the centrifugal buoyancy in parameter regimes corresponding to typical experimental
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set-ups in which the Coriolis force dominates over the centrifugal force. In order to
assess the importance of the centrifugal buoyancy, we have first analysed the Froude
number Fr = 0 case in which centrifugal effects are neglected and then compared it
with small Fr 	= 0 solutions corresponding to actual values of the Froude number in
laboratory experiments.

In both the Fr = 0 and Fr 	= 0 cases, the first instability of the base flow is a Hopf
bifurcation breaking the azimuthal symmetry with an eigenmode that corresponds to
a rotating wave, as predicted by dynamical systems theory. However, in the Fr= 0 case,
a large packet of eigenvalues bifurcate in a very narrow range of parameters. In terms
of a reduced Rayleigh number ε = (Ra − Rac(Ω))/Rac(Ω), the first 10 eigenvalues
bifurcate in an ε range of 2 × 10−4, well below the experimental uncertainties in
the parameter values. Even more important is the fact that the bifurcated solutions
saturate into states consisting of localized square patterns, completely different from
the individual structure of the bifurcating eigenmodes. These two facts make analyses
based on reduced partial differential equations models or even normal forms/centre
manifold reductions inappropriate. The analysis presented here, based on direct
numerical simulation of the Navier–Stokes–Boussinesq equations, although costly
from a numerical point of view because of the proximity to the bifurcation point
and the corresponding extremely long transients, is free from the above-mentioned
difficulties of the reduced models. This direct analysis has shed light on the nature of
the localized square patterns, previously observed in experiments near the onset as well
as in other numerical simulations, that the reduced models are unable to explain. These
patterns are associated with a tight packet of several eigenvalues bifurcating almost
simultaneously and correspond to saturated states involving significant contributions
from all the eigenmodes in the packet. The localized square patterns can be clearly
observed in an ε range of about 2 × 10−3, one order of magnitude larger than the
interval in which the spectral packet bifurcates. For larger ε values, it evolves to more
complex patterns which increasingly resemble Küppers–Lortz dynamics as ε increases
beyond about 8 × 10−3. This complex scenario at the onset of convection, involving
a broadband of eigenmodes, is what transpires when centrifugal buoyancy is ignored
by taking Fr =0.

For non-zero Froude numbers, even as small as Fr � 0.01, corresponding to typical
experimental values, a completely different transition scenario is observed. The base
state is no longer the conductive state but an axisymmetric target pattern. The onset
of three-dimensional convection is delayed up to ε = 2 × 10−3, and the spectral gap
between the different bifurcating eigenvalues is larger: the distance between the two
first bifurcating eigenvalues is now 7 × 10−4, more than three time the size of the
range of the first 10 bifurcating eigenvalues in the Fr= 0 case. As a result, the
bifurcating eigenmode saturates nonlinearly to a state with the same structure as
the eigenmode, and subsequent changes in the nonlinear solutions correspond to
secondary bifurcations. Here, the normal form approach is applicable and useful,
although its region of validity is narrow. With increasing ε, a succession of different
complex states emerge, resulting in Küppers–Lortz dynamics for ε greater than about
2 × 10−2.

The main conclusions of this analysis are the following. First, for values of Fr
that have usually been considered small enough to neglect centrifugal effects, there
are important changes in the dynamics sufficiently close to the bifurcation point
when the terms involving Fr are retained in the equations. Second, Küppers–Lortz
dynamics do not set in as a direct transition from the base state to spatio-temporal
complexity in finite systems. Instead, they are the result of a complex process involving



Onset of Küppers–Lortz-like dynamics in finite rotating thermal convection 355

cascades of bifurcations that take place in a very narrow parameter range. Third,
even taking Fr = 0, these complex processes do not lend themselves to analysis using
reduced partial differential equations models, and direct numerical simulation of
the Navier–Stokes–Boussinesq equations cannot be avoided. Incorporating Fr 	= 0, in
which case reduced models cannot be derived, broadens the spectral gaps between the
bifurcating modes and allows for a bifurcation theoretic treatment. In the particular
case we examined in detail in this paper, we find that as the Rayleigh number
is increased, the axisymmetric LSC smoothly evolves into an axisymmetric target
pattern which first becomes unstable at a Hopf bifurcation to an m = 23 rotating
wave, which on further increasing Ra undergoes a secondary Hopf bifurcation to a
modulated rotating wave with wavenumbers m =23 and m =6. The oscillations in
this modulated rotating wave become increasingly non-uniform, displaying ratcheting
characteristics and evolving towards Küppers–Lortz dynamics with further increases
in Ra. So, in some sense, the Fr 	= 0 problem fits the familiar transition to temporal
chaos following a small number of Hopf bifurcations (Ruelle & Takens 1971) but for
a spatio-temporal chaos involving symmetry-breaking Hopf bifurcations.
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Onset of Küppers–Lortz-like dynamics in finite rotating thermal convection 357

Lopez, J. M., Rubio, A. & Marques, F. 2006b travelling circular waves in axisymmetric rotating
convection. J. Fluid Mech. 569, 331–348.

Marques, F., Gelfgat, A. Y. & Lopez, J. M. 2003 A tangent double Hopf bifurcation in a
differentially rotating cylinder flow. Phys. Rev. E 68, 016310.

Marques, F. & Lopez, J. M. 2008 Influence of wall modes on the onset of bulk convection in a
rotating cylinder. Phys. Fluids 20, 024109.

Marques, F., Lopez, J. M. & Shen, J. 2002 Mode interactions in an enclosed swirling flow: a double
Hopf bifurcation between azimuthal wavenumbers 0 and 2. J. Fluid Mech. 455, 263–281.

Marques, F., Mercader, I., Batiste, O. & Lopez, J. M. 2007 Centrifugal effects in rotating
convection: axisymmetric states and three-dimensional instabilities. J. Fluid Mech. 580, 303–
318.

Mercader, I., Net, M. & Falqués, A. 1991 Spectral methods for high order equations. Comp. Meth.
Appl. Mech. Engng 91, 1245–1251.

Niemela, J. J. & Donnelly, R. J. 1986 Direct transition to turbulence in rotating Bénard convection.
Phys. Rev. Lett. 57, 2524–2527.

Ning, L., Hu, Y., Ecke, R. & Ahlers, G. 1993 Spatial and temporal averages in chaotic patterns.
Phys. Rev. Lett. 71, 2216–2219.

Orszag, S. A. & Patera, A. T. 1983 Secondary instability of wall-bounded shear flows. J. Fluid
Mech. 128, 347–385.

Ponty, Y., Passot, T. & Sulem, P. L. 1997 Pattern dynamics in rotating convection at finite Prandtl
number. Phys. Rev. E 56, 4162–4178.
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